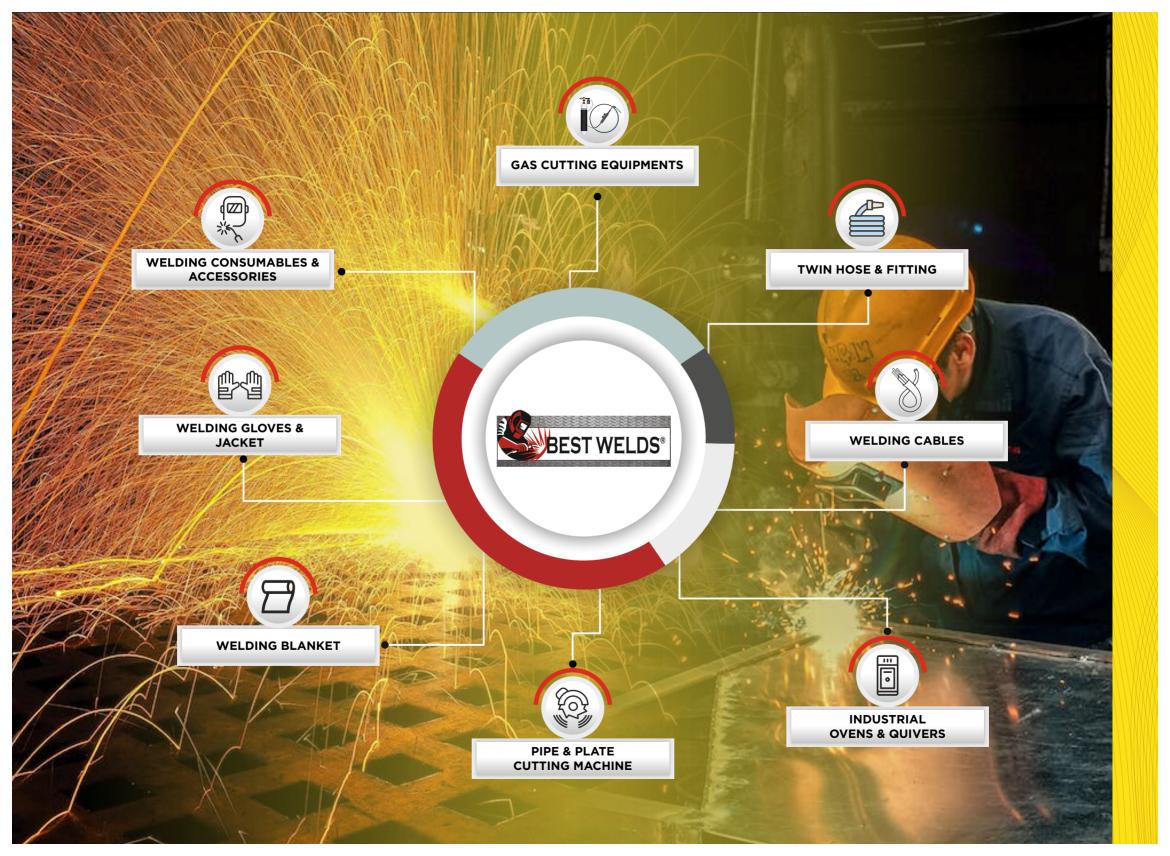


BEST WELDS PRODUCT CATALOGUE

ABOUT US



OKI Bering Middle East FZE is an affiliate of ORS Nasco 907 South Detroit, Ste. 400, Tulsa, OK 74120, U.S.A. - is a leader in the distribution of the industrial, welding, oilfield, safety, construction, HVAC, MRO, PVF, plumbing channel markets in the U.S.A. Canada & Latin America.

OKIME is one of the largest pure wholesaler of industrial supplies selling exclusively to distributors in the Middle East, Asia & Africa. OKIME have access to over 200,000 SKUs of premium products from more than 600 brands for use in the industrial, welding, oilfield, safety, construction, HVAC, MRO, PVF, plumbing channel markets. OKIME serves rapidly growing distributor customers with a strategically placed distribution center in Dubai, United Arab Emirates.

OUTFITS

Heavy Duty Welding & Cutting Set

Includes:

Packed in a strong stainless steel working case. Heavy duty regulators give you stable gas flow. High quality cutting attachment provides high performance and anti flashback function.

- Part No.: 900 4400552
- Oxygen Regulator BWS350-992
- Acetylene Regulator BWSA-993
- Cutting Attachment CA24
- Torch Handle WH30
- Acetylene Cutting Tip 1-1-101
- Acetylene Welding Tip 1-W 3-W-5-W

- Acetylene Heating Tip MFA-8
- R-Grade Hose 1/4"X20ft
- Gogale
- Tip Cleaner
- Spark Lighter
- Net Weight 13.5 kgs

Medium Duty Welding, Cutting And Brazing Outfit

Includes:

- Part No.: 4400557
- Oxygen Regulator BWS 250-540
- Acetylene Regulator BWS 25A-520
- Cutting attachment CA13
- Torch Handle WH10
- 2 x Check Valve
- Welding Tip1 W(1)

- Cutting Tip 1-3-101
- R-Grade Twin rubber hose 20Ft W/Fittings 9/16
- Spark Lighter
- Spanner
- Welding Goggle
- Tip Cleaner
- Weight (kg): 7.00

BESTWELDS®

OUTFITS

Portable Kit W/Cylinders

Features:

- Part No.: 900 4400559
- This set contains all the equipment you need for welding and brazing in a rugged, plastic carrying case
- The outfit is designed to carry one 2L acetylene cylinder and one 4L oxygen cylinder.
- Unique carry tote offers in-line balanced design for carrying ease.
- Waterproof storage compartment for small items.
- Rear entry regulators for better balance on the small cylinders.

Accessories:

1-3-101 Cutting tip

Welding Nozzle (1,2)

Torch Handle WH10

Twin Rubber Hose

Oxygen Cylinder 4L

Acetylene Cylinder

Oxygen Regulator BWS-210X-80

Acetylene Regulator BWS-210Y-15

15ft W/Fitting 9/16" T Grade

Cutting Attachment CA13

2L

Welding Goggle Shade#7

Spanner Spark Striker

Tip cleaner

CUTTING & BRAZING EQUIPMENT

WH30 - Heavy Duty Torch Handle

Includes:

The Model WH30 is heavy duty combination handle for welding, brazing, heating and cutting. It is designed to offer the highest flow possible allowing the use of larger tips. The handle is designed with tube-withina-tube construction and is 0-ring sealed for greater strength and higher capacity.

Features:

- Part No.: 1400426
- Thread Oxygen: 9/16" 18-RH
- Thread Fuel GAS: 9/16"-18-LH
- Weight (kg): 0,86
- Length (Inch.): 9.5

- Welding up to 30 mm
- Cutting up to 200 mm
- Heating up to 30 mm
- Tough extruded brass handle
- For acetylene or alternative gases
- Built-in Flashback arrestors

CA24 - Heavy Duty Cutting Attachment

Includes:

The Model CA24 heavy duty cutting attachment. The mixer design resists damage due to flashback. It is equipped with a durable stainless steel lever, has a coupling nut with locking ring to protect cutting the attachment seat and the cutting oxygen valve has an ease-on feature for more precise control.

Features:

- Part No.: 1300672
- Cuts up to 200 mm
- Spiral mix system
- Designed for maximum operator safety
- Stainless steel tubes

- Use with 1-101 and GPN tips
- Head Angle :90°
- Compatible Handle: WH30
- Thread Fuel Gas: 1-101 & GPN
- Weight (kg): 0.86
- Length (Inch.): 10.5

BESTWELDS

CUTTING & BRAZING EQUIPMENT

ST21" / ST36 / ST48 Straight Cutting Torch 90°

Includes:

The model ST21" is a heavy duty straight cutting torch designed for use with all fuel gases. It features stainless steel cutting lever, ease-on cutting valve and dual tube design.

Features:

- Part No. 900 1004656 ST21
- Part No. 900 1004660 ST36
- Part No. 900 1004658 ST48
- For use any fuel gas with appropriate tip
- Hose connections are 9/16"-18
- ST21 comes with built-in flashback arrestors
- ST36, 48 comes with external flashback arrestors
- Includes built-in flashback arrestors and reverse flow check valves for added safety.

- ST21 Cuts up to 200 mm.
- ST36, 48 Cuts up to 300 mm
- Use with 1-101, 1-GPN Tips
- Head angle optional: 70 / 90 / 180Standard length: 21"
- Extra length: 36", 48"
- Universal Mixer for any fuel gas
- Fuel Mixer close to head to avoid back fire

E450 & E250 Series Regulators

Includes:

E250 & E450 SERIES REGULATORS is a medium & heavy duty regulators suitable for various welding and cutting industry and laboratory use. Body is forged from class A brass bar. Housing cap press-formed from steel plate is coated with enamel finish. Large internal engineering ensures high gas flow and pressure stability. Snap-on front cover made of high grade PC enhances firmness of gauge against damage. Twin gauges provide explicate display of both cylinder pressure and working pressure.

Features:

- Extra heavy duty.
- Forged brass body and housing cap.
- Oxygen regulator w/safety relief valve is set for safe operation.
- Sintered bronze inlet filter.
- No soldered joints for easy maintenance.
- Easy to read dual scale guages 2-1/2"

Description	Part No. BWS E450-992	Part No. BWS E450-993	Part No. BWS E250-992	Part No. BWS E250-993
Gas Service	OXYGEN	ACETYLENE	OXYGEN	ACETYLENE
Max Inlet (psig)	3000	362	3000	362
Delivery Range (psig)	5-150	2-15	5-150	2-15

BESTWELDS®

BWS-35 Heavy duty Oxy-Act regulators

Features:

- Built with encapsulated HD valve seat to ensure the best flow rate and stable pressure
- Oxygen regulator with safety releaf valve
- Drop forged fine brass body and bannet
- 2.5" Guages
- Suit to severe working place

Part Number	Gas	Max Inlet (PSI)	Delivery Pressure (PSI)
900 3002303	BWS35A-993 ACETYLENE REGULATOR	300	15
900 3002302	BWS35O-992 OXYGEN REGULATOR	3000	150

om 06

P250 Series Medium Duty - Single Stage - Oxygen - Acetylene Regulators

>>>

Features:

- Forged brass body for maximum strength
- Easy to ready dual scale gauges 2"(50.8mm)
- Side entry
- Brass T screw handle

Part Number	900 3002295	900 3002296
Model	BWS-P250-992 OXY-REG	BWS-P250-993 ACT-REG
inlet connection	CGA-992	CGA-993
Outlet Connectoin	9/16"×18UNF-RH	9/16" x18UNF-LH
Gas Service	OXYGEN	ACETYLENE
Inlet Pressure (psig)	3000 PSI	362 PSI
Outlet Pressure (psig)	5-150	2-15

BWS-E250-Medium Duty CO2 Regulator

- Part No. 900 3002294
- Forged brass body for maximum strength.
- Side entry
- Easy to ready dual scale gauges 2"(50.8mm)
- Gas service: Carbon dioxide (CO2)

Description	Delivery Range (psig)	Inlet Pressure Psig	Inlet Connection	Outlet Connection
BWS - E250-320 CO2 Regulator	5-125	3000 PSI	BS 341(BS-8)	CGA 032 5/8" - 18 UNF

07

BESTWELDS®

BWS-210x-80 Oxygen Regulator CGA 540 REAR

40 REAR

Features:

Part No.: 900 3002283Gas Service : Oxygen

Maximum inlet pressure (PSI): 3000Maximum delivery pressure (PSI): 4-80

Inlet connection : CGA540 REAROutlet connection : 9/16" - 18RH(M)

BWS-210Y-15-5 ACETYLENE REGULATOR CGA520 REAR

>>>

Features:

Part No.: 900 3002284Gas Service : Acetylene

Maximum inlet pressure (PSI): 400Maximum delivery pressure (PSI): 2-15

Inlet connection : CGA520 REAROutlet connection : 9/16" - 18LH(M)

BWS-210Y-15 ACETYLENE REGULATOR CGA200 MC REAR

Features:

Part No.: 900 3002285

Gas Service : AcetyleneMaximum inlet pressure (PSI) : 400

Maximum delivery pressure (PSI): 2-15

• Inlet connection : CGA200 "MC" REAR

Outlet connection: 9/16" - 18LH(M)

BESTWELDS®

BWS-4J-992 - Inert & Oxygen Regulator

Includes:

Heavy duty, high pressure piston regulator. Ideally suited vessel and dead-end testing. Inlet fitting: CGA-992 Outlet Fitting: 1/4" Swagelok type brass +5/8"-20 UNF(M) inlet 1/8" NPT(F) outlet

Features:

- Part No. 3002293
- Machined brass body & housing cap
- 2" (50.8 mm) gauges brass
- Cartridge type seat assembly with PU seat
- Piston type actuation brass
- Large steel knob for smooth adjustments
- Sintered inlet filter bronze
- Gas servicce: Oxygen, Inert
- Delrin cap bushing for smooth adjustments

Description	Delivery Range (psig)	Inlet Pressure (PSIG)
BWS-4J-992 Inert & Oxygen Regulator	200-3000	3000

PURG500 Inert Gas Purging Regulator

Includes:

Heavy duty, Inert Gas Purging Regulator. Inlet fitting: CGA-992 Outlet Fitting: 1/4"-37° FLARE Forged Brass

- Part No. 900 PURG500
- Medium Duty
- Single stage design
- Forged brass body & housing cap
- Neoprene diaphragm
- 2" (50. 8 mm) Gauge

OEST WELDS	

Description	Delivery Range (psig)	Inlet Pressure (PSIG)
PURG500 Inert Gas Purging Regulator	500	3000

BESTWELDS®

>>>

Includes:

LPG-60-510 Single stage medium duty Propane Regulator. Inlet fitting: CGA-CGA-510 Outlet Fitting: 9/16" - 18 M LH

Features:

- Part No. 900 3002298
- Medium Duty
- Single stage design
- Neoprene diaphragm
- 2" (50. 8 mm) Gauge
- Forged Brass Body

Dual Outlet Baloon Regulator CGA - 992

Includes:

The aluminum foil filled balloon is filled and automatically closed. Inlet fitting: CGA-992

Features:

- Part No. 900 3002286
- The aluminum foil filled balloon is filled and automatically closed
- Easy to read content gauge
- Large handtight connection for easy, leak free cylinder attachment
- Tapered foil tip for easy inflation

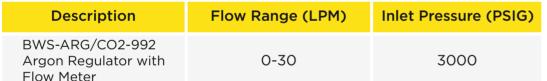
Description	Delivery Range (psig)	Inlet Pressure (PSIG)
Dual Outlet Baloon Regulator CGA - 992	116-145	2900

BWS-ARG/CO2-992 Argon Regulator with Flow Meter

Includes:

- This regulator with flow-meter is for special application in TIG and MIG welding. It is suitable for manufactory, construction and installation industry. Flow: 0-30 LPM, Inlet fitting: CGA-992 Outlet Fitting: 5/8"-78 RH(f), CGA 032
- Body is forged from class A brass bar. External relief valve ensures safety in use. There are multi outlet coupling to choose. Inlet is protected by a sintered bronze

Part No. 900 3100680

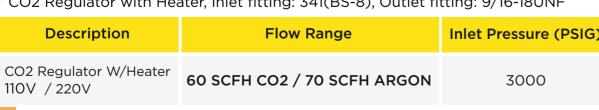

compact design with flow-meter integrated with regulator.
The compact design makes it easy to carry and install

Introduces piston-loaded design. Presetoutlet pressure is at 3.5 bar. Functionality: It can achieve precise control over the flow rate between 0-50 SCFH.

Flow-meter employs visual-friendly dual scale for both

Gas Services: suitable for gases such as Ar, CO2, He, and mixed gas

What you get: Ar and CO2 It can be observed from all direction and won't



CO2 Regulator W/Heater 110V/220V

Features:

- Part No. 900 CO2RH220V / 900 CO2RH110V
- CO2 Regulator with Heater, Inlet fitting: 341(BS-8), Outlet fitting: 9/16-18UNF

Description	Flow Range	Inlet Pressure (PSIG)
CO2 Regulator W/Heater 110V / 220V	60 SCFH CO2 / 70 SCFH ARGON	3000

BESTWELDS®

CUTTING TIPS

1-101 Acetylene Cutting Tips

Features:

• General preheat one-piece acetylene hand cutting tips for relatively clean steel.

Part No.	1504899	1504900	1504901	1504902	1504903	1504904	1504905
Model:	0-1-101	1-1-101	2-1-101	3-1-101	4-1-101	5-1-101	6-1-101
Plate Thickness (mm):	8 - 15	15 - 25	25 - 50	50 - 75	75 - 100	100 - 150	150
Top Size:	0	1	2	3	4	5	6*
Oxygen (bar):	1,7 - 2,4	2,1 - 2,4	2,4 - 3,1	2,8 - 3,4	2,8 - 3,4	3,1 - 3,8	3,1 - 3,8
Acetylene (bar):	0,20 - 0,35	0,20 - 0,35	0,20 - 0,50	0,30 - 0,70	0,35 - 0,70	0,50 - 0,90	0,50 - 1,00
Plate Thickness:	5/16' - 5/8"	5/8" - 1"	1" - 2"	2" - 3"	3" - 4"	4" - 6"	6"
Oxygen Psig:	30 - 40	40 - 50	45 - 55	50 - 60	60 - 75	30 - 40	30 - 40
Acetylene Psig:	7	7	8	9	10	11	12
Cutting Drill Size:	#61	#56	#53	#50	#46	#39	#31
Weight (kg):	0,098	0,098	0,098	0,098	0,098	0,098	0,098

CUTTING TIPS

GPN Propane Gas Hand Cutting Tips

Features:

• General preheat Two-piece hand cutting tips for relatively clean steel.

Part No.	1502903	1502904	1502905	1502906	1502907
Model:	GPN-0	GPN-1	GPN-2	GPN-3	GPN-4
Plate Thickness (mm):	8 - 15	15 - 25	25 - 50	50 - 75	75 - 100
Top Size:	0	1	2	3	4
Oxygen (bar):	1,7 - 2,4	2,1 - 2,4	2,4 - 3,1	2,8 - 3,4	2,8 - 3,4
Fuel Gas (bar)	0,20 - 0,35	0,20 - 0,40	0,20 - 0,55	0,30 - 0,60	0,40 - 0,60
Plate Thickness	5/16' - 5/8"	5/8" - 1"	1" - 2"	2" - 3"	3" - 4"
Oxygen Psig	25 - 35	30 - 35	35 - 45	40 - 50	45 - 50
Acetylene Psig	3 - 5	4 - 6	4 - 9	5 - 10	8 - 12
Cutting Drill Size	#60	#56	#53	#50	#45
Weight (kg)	0,094	0,094	0,094	0,094	0,094

BESTWELDS®

BRAZING & HEATING EQUIPMENT

Welding Nozzles

• The Welding Nozzles are welding and brazing assemblies consisting of a mixer and a tip that can be used with acetylene.

Features:

- Equal pressure mixing system
- Made of copper and brass
- To be used with acetylene
- It is compatible with WH30 Handle.

PART NO.	1601920	1601921	1601920	1601921	
Size #	# O	# 1	# 2	# 3	
Flow (it/hr)	45	65	160	350	
Welding Thickness	0,2 - 0,5	0,5 - 1,0	1,0 - 2,0	2,0 - 40	
Oxygen (bar)	0,3 - 0,8	0,3 - 0,8	0,3 - 0,8	0,3 - 0,8	
Acetylene (bar)	0,3 - 0,8	0,3 - 0,8	0,3 - 0,8	0,3 - 0,8	Operating Pressures
Weight (kg)	0,330	0,330	0,330	0,330	

Acetylene Heating Nozzle

• The Heating Nozzle is heating assembly consisting of a mixer, a tube, and a heating tip that can be used with acetylene.

- Part No. 1800904
- Equal pressure mixing system
- Made of copper, stainless steel and brass
- To be used with acetylene

Oxygen Pressure (bar)	Acetylene Pressure (bar)	Oxygen Flow (I/h)	Acetylene Flow (I/h)	Heating Output (Kcal/h)	Weight (kg)
0,6 - 1,0	0,6 - 1,05	2500-4300	2250-3950	29800-52000	0,582

SAFETY DEVICES FLASHBACK ARRESTORS

Regulator / Torch Flashback Arrestor

Features:

- Stops flashback through flame arrestor
- Dust filter protects the gas non-return valve against contamination
- 100% tested
- According to EN 730-1, ISO 5175
- Protect against dangerous gas mixtures by a gas non-return valve

For connecting at cylinder regulators and tapping points

Part No.	900 4301860 L	900 4301861 R	900 4301878 L	900 4301877 R
Model	FB Reg Fuel	FB Reg Oxy	FB Reg Fuel	FB Reg Oxy
Gas	Fuel gas	Ox	Fuel gas	Ox
Max Flow (I/h)	30 000	100 000	30 000	100 000
OXY	-	25	-	25
AC	1,5	-	1,5	-
LPG	5	-	5	-
Inlet Thread	9/16"-18-UNF-2B-LH	9/16"-18-UNF-2B-LH	3/8"-LH	3/8" - RH
Outlet Thread	9/16"-18-UNF-2A-LH	9/16"-18-UNF-2A-LH	3/8"-A-LH	3/8" -A-RH

For a torch protection

Part No.	900 4301859 L	900 4301858 R	900 4301876 L	900 4301875 R	
Model	Fb Torch Fuel	Fb Torch Oxy	Fb Torch Fuel	Fb Torch Oxy	
Gas	Fuel Gas	Ox	Fuel Gas	Ox	Max
Max Flow (I/h)	20 000	65 000	20 000	65 000	×
Oxy	-	15	-	15	ressu
Ac	1,5	-	1,5	-	nse
Lpg	4	-	4	-	re
Inlet Thread	9/16"-18-unf-2a-lh	9/16"-18-unf-2a-lh	3/8"-a-lh	3/8" -a-rh	Bar
Outlet Thread	9/16"-18-unf-2b-lh	9/16"-18-unf-2b-lh	3/8"-lh	3/8" - Rh	

BESTWELDS® www.oki-me.com

TIG TORCHES & WELDING ACCESSORIES

Tungsten Electrodes

Features:

Tig Torch Accessories

- 2% Thoriated Tungsten
- 2% Ceriated Tungsten
- Zirconiated Tungsten
- 1.5% Lanthanated Tungsten
- E3 Supreme Tungsten
- Available in 1.6, 2.4, 3.2mm sizes

Portable Tungsten Grinders with Carrying Cases > >

Portable Tungsten grinding system means less welding down time, Enclosed grinding system protects the welder and the environment correct electrode grain direction and automatic collection of grinding dust. Multiple grinding positions ensure long grinding wheel life. Stick-out adjustment ensures minimal loss of tungsten. Integrated exhaust with are placeable filter.

Part No.	Description
900 BWS-TG-3	TUNGSTEN GRINDER 220V (1.6-3.2MM)
900 BWS-TG-6	TUNGSTEN GRINDER 220V (1-6MM)

BWS TG-6

WELDING GAUGES

HI-LO Economy Gauge Metric

Includes:

Internal HI-LO Gauge 4 quick steps check internal alignment You can check the internal alignment of your fit-up quickly with the Bestwelds HI-LO gauge.

Part No.	Description	
900 BWS-2M	HI/LO Economy Gauge Metric	

HI-LO Welding Gauge

Includes:

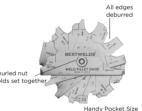
 Measures Internal Alignment of Pipe after fit-up / Alignment, cuts radiographic rejects. Measures internal misalignment of pipe before & after tacking. Measurements read in standard one side, and metric on the opposite side.

Part No.	Description	
900 BWS-1	HI/LO Welding Gauge (Standard and Metric)	

Bridge Cam Gauge

Includes:

 Bridgecam gauge can perform several different types of measurements of welds in both inches or millimeters.



Part No.	Description	
900 BWS-4	Bridgecam Gauge (Standard and Metric Gauge)	

Fillet Weld Gauge

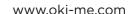
Includes:

• The BESTWELDS Fillet Weld Gauge allows fast, accurate measurement of eleven (11) fillet weld sizes: 1/8. 3/16. 1/4. Knurled nut 5/16. 3/8, 7/16. 1/2, 5/8, 3/4, 7/8. and 1", and their metric equivalents, to determine weld sizes, either concave or convex.

HI-LO Gages GAP-A-LET RING

Part No.	Description
900 MG-11	Standard and Metric Gauge

Taper Guage - 1/32-5/8



Includes:

410 Stainless Steel Measurement Scale : On side 1: Inches On side 11: Metric

Part No.	Description
900 BWS-28A	Taper Gauge

BESTWELDS®

GOUGING CARBONS

Gouging Carbons / Torch

Features:

- Designed Specifically for the air carbon arc process
- Contain a precise formulated blend of carbon and graphite
- Produces the most efficient metal removal performance in today's market
- Superior metal removal rates, cool operation, and uniform diameters
- Ideal for a broad range of applications Creating U-grooves for weld joint Removing old welds Gouging out cracks Cleaning and repairing castings Removing hard surface material Rough machining
- DC Pointed Gouging Carbons
 Use for cutting Welding defects removing mold pits and producing mold hole. This product increases welding

speed and saves cost without harming the material.

Part Number	Item Name	Part Number
900 BWS-GC-6.9MM	6MM 1/4X12 DCCC GOUGING CARBON 50/PKG	320-370
900 BWS-GC-7.9MM	8MM 5/16X12 DCCC GOUGING CARBON 50/PKG	400-450
900 BWS-GC-9.5MM	10MM 3/8X12 DCCC GOUGING CARBON 50/PKG	500-550
900 BWS-GC-12.7MM	12MM X 14 - DCCC GOUGING CARBON 20/PKG	800-1000

Gouging Torch

Features:

Part No. BWGT 1000

Standard: 5/8" internal thread

Optional: 3/8" internal thread

Cable Size : 7ft (2.1mm)

35%: 1200 Amp

60%: 1000 Amp

70mm²

.

1/2 "

4.5 Kg.

WELDING ACCESSORIES

Spark Lighter 3 Flint

>>>

Features:

- Part No. 900 3F-LGTR
- Triple-flint lighter is a quality made for the demands of the welding industry. It has a strong frame and three large flint for dependable ignition under all working conditions.
- Lightweight and low-cost

Chipping Hammer

Features:

- Part No. 900 OOOH
- Head Length = 6.54inch
- Head Made of Alloy Steel (ENS)
- Solid Steel Rod Handle with Spring Coil Grip
- Overall Length=11.02inch
- Vertical Type Cone & Chisel
- Chisel (Blade) Length = 1.02inch

Tip Cleaner Set-8 cm

Features:

Part No. 900 TC-STD

Cleaner	' Use	Chart
77-76	15	61-60
75-74	16	59-58
73-71	17	57
70-68	18	56
67-65	22	55-54
64-62	24	53-52
	26	51-49
	77-76 75-74 73-71 70-68 67-65	75-74 16 73-71 17 70-68 18 67-65 22 64-62 24

Welders & Pipe Filters "Rap - Arouns"

Features:

- Double ruled so both the top and bottom surfaces can be used for layouts - it is never upside-down!
- Packaged in its own clear plastic tube to protect it between uses.
- 12 per case.

Part No.	Description			
Part No.	Size	WxL	Pipe Size	
RA150	small	2-1/2\('2'	1"to 3"	
RA160	medium	4'x 4'*	3"to 6"	
RA170	large	4'x 6'*	3"to 10"	
RA177	x-large	4'x 7'*	4"to 12"	
RA179	xx-large	4'x 9'*	6"to 16"	

BESTWELDS®

CABLE CONNECTORS

Cable Connectors (50, 70, 95, 120mm)

Features:

- Positive cam action locking design
- Heat and oil resistant covers
- Ball point cable connection-accepts 1/0, 2/0, 3/0 and 4/0 welding cable
- Amperage capacity.
 - Part No: 900 BWS-20HD-450 @ 80 volts DC/AC
 - Part No: 900 BWS-40HD-500 @ 80 volts DC/AC

Recommended cable size:

Part No: 900 BWS-20HD-50/70/95mm ■ Part No: 900 BWS-20HD-95/120mm

Cable Connectors (35, 50, 70, 95mm)

Features:

- Part No. 900-CCD 507095-M / 900-CCD 507095-F
- Cam lock Style Male / Female Cable Connector
- Made from 24mm solid Brass HEX
- Conforms to EN60974-12
- Cable Capacity=35, 50, 70, 95mm2

Part Number	Item Name	Type Cable Connection	Standard Package
900 BWS-20HD-M	50/70/95MM HD Male Cable Connector	Single Ball-point	2 EA Per Pkg
900 BWS-20HD-F	50/70/95MM HD Female Cable Connector	Single Ball-point	2 EA Per Pkg
900 BWS-40HD-M	95/120MM HD Male Cable Connector	Single Ball-point	2 EA Per Pkg
900 BWS-40HD-F	95/120MM HD Female Cable Connector	Single Ball-point	2 EA Per Pkg

WELDING ACCESSORIES

Copper Ground Clamp

Features:

- Heavy Duty Copper Alloy
- Heavy Duty spring providing force to the work surface

Part Number	AMPS	Jaw Opening	Cable Conn Capacity	Length
900 6600661	300	1 1/2" - Depth 4" 38,1mm - 101,0mm	Ball - pont thru 3/0	8 1/2"
900 6600662	500	2" - Depth 5 1/4" (50,8mm- 133,0mm)	Ball - pont thru 4/0	10"

Copper Cable Lugs

Features:

Part No. BWS L-1020

Product Code	Size of Cable Lug	Poly Bag	
900 L-0106	LUGS #1,#6	10	1000
900 L-1020	LUGS 1/0, 2/0	10	500
900 L-3040	LUGS 3/0, 4/0	10	200

BESTWELDS®

GROUND CLAMPS

Croco Series - SGC - 500

Features:

- With Braided Copper Shunt
- Brass Jaws
- steel Stud. Bolt

250 Amp

2/0

70mm²

50 Pcs

Screw Type Ground Clamps - GC-P600-BC

Features:

- Upper & lower jaw made of Brass
- Handle made of Steel
- Allen screw M12 x 12mm long
- Confirms to EN 60974-13

Croco Series - SGC-600i

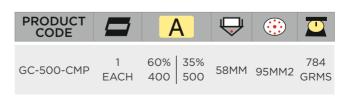
Features:

- With Braided Copper Shunt
- Brass Jaws
- steel Stud. Bolt

2/0

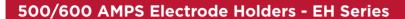
50 Pcs

Brass


Screw Type Ground Clamps - BWS GC-P600

Features:

- Lower Jaw made of Brass Casting
- Upper Jaw and Handle made of Steel
- Allen screw M12 x 12mm long
- Confirms to EN 60974-13



Heavy Duty "C" Type Ground Clamp

ELECTRODE HOLDERS

Features:

- Reversible top & bottom insulators
- 6-position jaw patters
- Double ball point cable connection accepts upto 95mm welding cable for 500 Amps and upto 120mm for 600 Amps Electrode Holder.
- Recommended upto 8mm Electrode in 500 Amps (Part No. 900 EH500)
- Recommended upto 9.5mm Electrode in 600 Amps (Part No. 900 EH600)
- 275mm overall length

Part Number	60%	35%	Ø MM	MM²
900 EH500	500	550	8.00	95
900 EH600	600	650	9.50	120

Electrode Holder

Features:

- Easy to replace Insulators
- Efficient 6-Posiiton Jaw Patterns
- Ball point cable connections
- Fully Insulated & Protected Springs
- Heavy Duty Copper Alloy

Part Number	AMPS	Electrode Size	Cable Connection
900 5500550	250	3/16" (4.8mm)	2/0
900 5500551	300	7/32" (5.6mm)	2/0
900 5500552	400	1/4" (6.4mm)	4/0
900 5500553	500	3/8" (9.5mm)	4/0

BESTWELDS®

WELDING ACCESSORIES

Tank Wrench H-Key				
Part Number	Description			
900 TW H	Socket holes are deep, smooth and precisely sized for solid connection Wrench come in high quality, Golden Zn Finish			

Inert Nipple (For Argon Reg)					
Part Number	Description	Size			
900 INRT-NPL	2 7/32"Long, Barb for 1/4" ID Hose	B-Size			

Inert Nut (For Argon Reg)					
Part Number	Size	Service			
900 INRT-NUT	Inert Gas, Male RH	B-Size	CGA-032		

BESTWELDS®

WELDING ACCESSORIES

Auto Darkening Helmet

Features:

- Part No. 1600300 / 1600301
- From the high heat to the flying sparks to the bright flashes of UV, welding safety gear and PPE is essential for a lot of construction jobs that need to use welding to join materials together. Your eyes, face, hands, and body are all vulnerable to welding injuries and hazards. One of the most important and recommended safety features is a welding helmet. As long as they're chosen properly, all

Specifications:

- Battery: solar cells (Lithium battery not included)
- Catridge Size : 110x90x9mmViewing Area : 98x53mm
- Light states : DIN 4
- Dark States: Dins-9, 9-13 Free Adjustment (Internal, Variable)
- Arc Sensor: 4
- Low Volume Alarm : Yes
- ADF Self-check : Yes
- Switching Time (Light to Dark): <1/25,000 seconds (normal temperature conditions)
- UV protection : 16 levels welding/grinding mode
- Weight: 450

INDUSTRIAL OVENS & QUIVERS

Electrode Quiver

Features:

Part No. 900 BWS-FT-110V-B

Voltage : 110V

• Wattage: 200W

Electrode Capacity: 10kg / 22Lbs

■ Temp Range : 150°C

• 10KG Electrode Oven

110V W/Basket

Electrode Quiver

Features:

Part No. 900 BWS-I-220V-5B

Voltage : 110V, 220V

Wattage: 200W

Electrode Capacity: 50kg / 11Lbs

■ Temp Range: 150°C

5KG Insulated Electrode Oven

220V W/Basket

Electrode Quiver

Features:

Part No. 900 BWS-FT-220V-B

Voltage: 220VWattage: 200W

Electrode Capacity: 10kg / 22Lbs

Temp Range : 150°C

■ 10KG Electrode Oven

■ 110V W/Basket

Electrode Quiver

Features:

900 BWS-IAT-220V-10B

Voltage : 110V, 220V

Wattage: 200W

Electrode Capacity: 10kg / 22Lbs

■ Temp Range : 150°C

10KG Insulated Electrode Oven

2200V W/Basket, Analogue Thermostat

BESTWELDS®

FLUX BAKING & HOLDING OVENS

Holding & Baking Flux Oven

Features:

Part No. BWS-DT-FLUX100-SWT

Voltage: 220V

• Wattage: 3000W

• Flux Capacity: 120kg / 100Ltr / 260Lbs

■ Temp Range :

Holding Oven: 100°C - 300°C
 Baking Oven: 300°C - 400°C

INSIDE VIEW

Slag screen acts as sieve to filter out contaminant and protection to heating elements below.

Well dispersed multiple heating elements ensure even distribution of heat

Holding & Baking Flux Oven

Features:

BWS-DT-FLUX200-SWT

■ Voltage: 220V

• Wattage: 6000W

Flux Capacity: 240kg / 200Ltr / 530Lbs

Temp Range :

Holding Oven: 100°C - 300°C
Baking Oven: 300°C - 400°C

INSIDE VIEW

Slag screen acts as sieve to filter out contaminant and protection to heating elements below.

Well dispersed multiple heating elements ensure even distribution of heat

BESTWELDS®

ELECTRODE BAKING & HOLDING OVENS

Baking & Holding Bench Oven

Features:

Part No. 900 BWS-DT-300KG-SWT

Voltage: 220VWattage: 3000W

• Electrode Capacity: 300kg / 661Lbs

Temp Range:

Holding Oven: 200 - 400°C
 Baking Oven: 400 - 500°C

Inner Chamber Has 4 Shelves Stainless Steel

Baking & Holding Bench Oven

Features:

Part No. 900 BWS-DT-110KG-SWT

Voltage: 220VWattage: 2000W

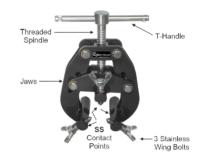
Electrode Capacity: 110kg / 250Lbs

Temp Range:

Holding Oven: 100°C - 200°C
Baking Oven: 300°C - 400°C

Inner Chamber has 4 Sections

Max. Temp: 400°C (932°F)


PIPE CLAMP & STAND

Pipe Fit up Clamps

Features:

- All Steel Construction
- Powder Coated Finish
- Stainless Steel Contact points & alignment screws
- Pipe Fit up Clamps are used to align pipes / fittings and other cylindrical work pieces for welding. It includes a quick acting feature for fast installation and use.
- Can be used on stainless steel pipe

Part Number	Pipe	Diameter Rar	nge (D)	Weight	Packing
900 BWS-FTC-1.2.5	1-2.5"	25-63mm	4.63 lbs	2.10 kg	10 pcs
900 BWS-FTC-2-6	2-6"	50-152mm	9.26 lbs	4.20 kg	5 pcs
900 BWS-FTC-5-14	5-14"	127-366mm	21.16 lbs	9.60 kg	2 pcs

Foldable Pipe Stand

Features:

- Part No. 900 BWS-PSV28-1135
- V-Head
- T-handle for extra safety in securing V-head
- Heavy duty legs
- Wider tripod leg gap for extra stability.

BESTWELDS®

BESTWELDS MAX PIPE STAND

• The BESTWELDS Max Pipe Stand is ideal for large diameter pipes (up to 36" / 920 mm) and its V-head can be equipped with multiple options. The 5 leg giant jack can be fitted with caster wheels, allowing pipe movement.

Specifications:

- PVC coated steel casters with solid hub increase safety and durability.
- 5,000 lbs. capacity without wheels and casters.
- 2,500 lbs. capacity with steel wheels and PVC coated steel casters
- Operating height with swivel casters: 40" 52" / 101 132 cm
- Operating height with jack only: 30" 42" / 76 106 cm
- Minimum maximum pipe diameter 4" 36"
- Solid 1^{3/4}" ACME-thread adjustment.
- 11/2" wide steel wheels to reduce instances of "pipe travel".

PLATE CUTTING MACHINE

BWS-200 Portable Flame Cutting Machine

• The BWS-200 Portable Flame Cutting Machines is a tough, ruggedly constructed cutting machine. vet compact and light enough that it may be taken to the worksite. It is a versatile, economic, basic guidance system that can be used for dependable, trouble-free flame cutting flame treating or hardening. A constant speed AC induction motor is located on the side opposite the cutting torch for cooler operation. The cone disk drive has an automatic wear adjustment mechanism that prolongs the life of the disk drive. Downtime and repair costs are reduced to a minimum. It is suitable for filed jobs and repair work, as well as straight line and circle cutting operations required in metal fabrication.

It is suitable for field jobs and repair work, as well as, straight line and circle cutting operations required in metal fabrication

Features & Benefits

Operating Features:

- Makes straight-line cuts of any length.
- Makes bevel or chamfer cuts-Has calibrated scale for easy torch angle selection.
- Makes X, Y,V or K cuts with multiple torches for plate edge operation.
- Cuts strip with two or more torches for plate edge operating.
- Dual speed and clutch controls makes the machine easy to operative from either end

Structures Features:

- Constant speed AC induction motor located on the side opposite the cutting torch runs
- cooler: therefore, the drive speed is not adversely affected by temperature.
- Speed regulation is as good at low speeds as it is at high speeds due to the cone disk
- variable speed drive and the ac induction motor
- Flat top mounting surface has standard bolt pattern to accommodate MIG,TIG

Design Features:

- Integral carrying handle, light weight and balanced design allow the machine to be carried with one hand.
- A balanced design makes the machine stable when cutting, allowing a racking distance of up to 18mm from the machine with a standard torch, and no counter weight is
- Cone disk drive has an automatic wear adjusting mechanism which prolongs the life of the drive.

Standard configuration

BWS-200HS is modified to operate with double the Max. Speed of standard BWS-200 3000mm/Min

Has all the convenience and portability features of the standard BWS-200 machine plus a speed range of 5" (13cm) to 120" (305cm)/Minute.

The BWS-200HS has a flat mounting deck.

BWS-200HT is modified to withstand 300°F continuous operating temperatures such as found in mill and foundry applications. Same convenience, portability, features and speed of the BWS-200 (Max temp 300°F), plus the addition of a heat shield.

Circular Cutting

The versatile BWS-200 is a precision, tractor-type machine that can be used on its own track for straight line cutting and a variety of welding operations. Off track and with a radius rod assembly, the BWS-200 can be used for circle cutting.

Model no.	Cutting thickness (mm)	Cutting Speed (mm/min)	Cuting Circle (opmm)	Cutting thickness (kgs)
BWS-200 BWS-200HS BWS-200HT	6-100 6-100 6-100	25-1524 127-3048 25-1524	102-2438 102-2438 102-2438	18.8 18.8 19.5
BWS-200l1	6-100	25-1524	102-2438	25.8

- 1. Single torch mount post 2. Rack bar
- 3. Torch holder assembly
- 4. Torch pivot knuckle
- 5. Cutting torch
- 6. Distributor (manifold block
- 7. Speed adjusting knob
- 8. Clutch control lever

Design Features:

- Dual torch mount plate
- 2. Rack handle assembly
- 3. Torch mount post
- 4. Torch holder assembly
- 5. Rack Handle assembly
- 6. Dual-torch distributor

BESTWELDS

PLATE CUTTING MACHINE

Pro Plate Cutting Machine 220v with 1.8mtr Track

Features:

- Part No. 900 BWS-PLTC-MCPRO
- Versatility and Convertibility: All types of straight line, strips circle, and bevel cutting
- Unique Double Cone Drive System : Allows infinite speed range adjustment using constant Speed motor
- Expanded Use: High speed 1600mm/min (50Hz) not only be suitable for oxy-fuel cutting but also for plasma Cutting Machine (with optional plasma torch holder).
- High Temperature: Speed adjustment is done in mechanical way which allows the machine can work under high temperature.
- Rigid Design: Superior Heat-proof to normal portable cutting machine
- Extendable 1.8m Track Sections: To cut longer parts 1.8m track can be joined
- Convenient Handling: Readable speed with gauge display of speed and easily controllable clutch

Note: Optional Accessories for circle cutting

Part Number	Description
900 1600229	Circle Cutting Attachhment For Bws-pltc-mcpro
900 1600230	Wheel For BWS-PLTC-MCPRO

Cutting Tip - 3, 4, 5# standard configuration. Other size available upon request.

Technical Details						
Cutting thickness (mm)	Cutting speed (mm/per min)	Torch Number	Weight W/Rail	Cutting Tips Size		
6-100	240 - 1600 at 50Hz 300 - 2000 at 60Hz	1	25kg	3, 4, 5		

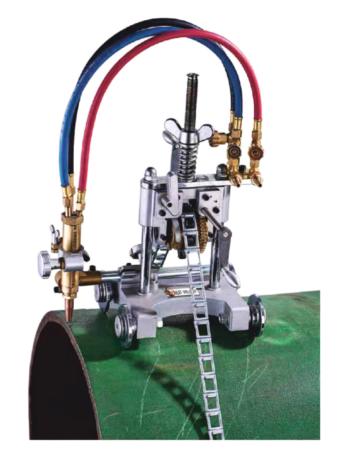
Optional Accessories Can Be Equipped With Multiple Torches For Square V, Y, Or X-bevel

PIPE CUTTING MACHINE

Pipe Cutting & Beveling Machine Chain Type Manual

Includes:

• The chain and gear drive system is used in this manually operated portable oxy-fuel pipe cutting machine. The drive chain is made out of strong, interlocking links that can be added or removed to adjust pipe sizes quickly. A graduated bevel collar ensures that the bevel is set correctly. The fuel, preheat oxygen and cutting oxygen control valves are all located away from the heat yet close enough for simple operator access.


Features:

- Part No. BWS-PCM-4-24"
- Interlocking Chain Links
- Worm Gear Drive

quick Stock

Bevel Cut

Chain Type	Single - chain
Quick stop clutch	Included
Effective pipe diameter	114-600mm (4.50-24") by standard chain (2.4m=96") over 600mm by extra chain addition
Cutting thickness	Up to 50mm (2"), with Cutting Tips Size: 1,2,3
Cutting shape	Square and bevel (up to 45°)
Drive method	Manual
Size	250x250x400(mm)
Weight	10.5Kg (w/Chain)

33

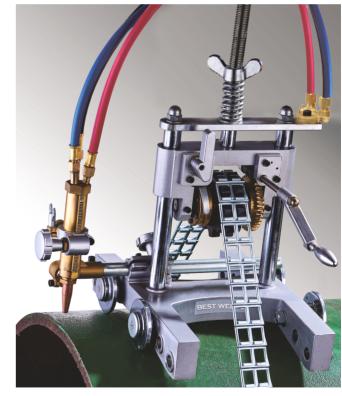
BESTWELDS[®]

PIPE CUTTING MACHINE

Pipe Cutting & Beveling Machine Dual Chain Type Manual

Includes:

• The chain and gear drive system is used in this manually operated portable oxy-fuel pipe cutting machine. The drive chain is made out of strong, interlocking links that can be added or removed to adjust pipe sizes quickly. A graduated bevel collar ensures that the bevel is set correctly. The fuel, preheat oxygen and cutting oxygen control valves are all located away from the heat yet close enough for simple operator access.


Features:

- Part No. BWS-PCM-DL-4-24"
- Interlocking Chain Links
- Worm Gear Drive

Quick Stock

Bevel Cut

Chain Type	Dual - chain
Quick stop clutch	Included
Effective pipe diameter	114-600mm (4.50-24")by standard chain (2.4m=96") over 600mm by extra chain addition
Cutting thickness	Up to 50mm (2"), with
	Cutting Tips Size: 1,2,3
Cutting shape	Square and bevel (up to 45°)
Drive method	Manual
Size	250x250x400(mm)
Weight	18Kg (w/Chain)

BESTWELDS[®] www.oki-me.com

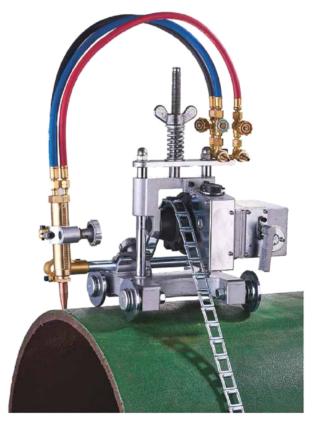
PIPE CUTTING MACHINE

Motorized Pipe Cutting & Beveling Machine 220v Chain Type

Includes:

- The machine is remote control gas motorized pipe cutting machine based on Model Lark-Q design. It's a lightweight, portable yet robust chain tube pipe cutting machine.
- Suitable for Oxy-Fuel and Plasma Cutting

Features:


Part No. BWS-PCM-MTZ-624-P

Chain Type	Single - chain			
Quick stop clutch	Included			
cutting Speed	100-2300mm/min			
Effective pipe diameter	150-600mm /(6-24") by standard chain larger size over 600mm by extra chain addition			
Cutting thickness	up to 50mm (2"), with Cutting Tips Size: 1,2,3			
Cutting shape	Square and bevel (up to 45°)			
Drive method	Motorized			
Size	265x420x450(mm)			
Weight	16Kg			

35

BESTWELDS®

PIPE CUTTING MACHINE

Magnetic Pipe Cutting Machine 220v

>>>

Includes:

• There are two sets magnetic rollers are installed inside the machine body to keep the machine crawl on the pipe when cutting is operated. It can be used for parallel, vertical and face-down cutting. The machine features compact structure, stable running and easy operation.

Optional steel belt assembly can be used to cut the big size pipe (Above 0600mm) to assure the cutting accuracy. The Machine body is made of aluminum alloy to make the machine light and durable. The magnetic absorbability force is over 50kg and assures the machine attached to the pipe firmly. Bevel angle I $\,\mathrm{Y}\,\mathrm{V}(\,45^\circ)$

Features:

Part No. BWS-MAG220

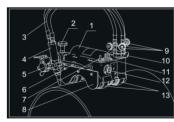
Technical Specification	
Item	BWS-MAG220
Effective pipe diameter	>108 mm
Cutting thickness	6 - 50 mm
Cutting speed	50-750 mm
Magnetic force	>50kg magnetic forces might become weaker after long use and need recharge
Power source	AC 220/110V, 50/60HZ
Torch number	1 pc oxy-fule torch
Gross weight (w/transformer)	18.5 kg
Dimensions (mm)	350 x 310 x 280 (mm)

Beveling application

Guide rail unit Installation

The optional guide rail provides high cutting accuracy and makes the MAGAPIPE-S Type pipe cutting machine particularly suitable for large pipes. The fixed guide rail also makes it possible to cut vertical pipe

Guide Rail Unit (Optional) It consists of 3 parts:


- 1. Steel belt unit (includes steel belt and Support lugs)
- 2. Hooking Unit: Used to Lock the belt
- 3. Fixing and holding unit Used to hold and fix the steel belt unit onto the machine body.

BWS-MAG220

- 1. Main unit
- 2. Cross feed handwheel
- 3. Hose
- 4. Torch
- 5. Torch holder
- 6.Carring handle
- 7. Forward/backward switch
- 8. Heat shield plate
- 9. Valves
- 10. Distributor
- 11. Speed knob
- 12. Power socket
- 13. Magnet roller

BESTWELDS®

• • •

COVER LENS

2x4 1/4 Filter Plates

Features:

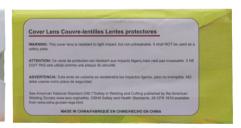
 Bestwelds filter plates offer ultimate protection against ultraviolet and infrared rays present in the welding environment Precision ground and edged to allow a safe and proper fit Precisely shaded and optically correct

Test & Approvals: ANSI-Z87.1 2003; OSHA

Material: Hardened Glass

Shade: 4 thru 14

2x4 1/4 70% Cr-39 Cover Lens


Features:

- Resistant to abrasion, pitting, spatter, chemicals & solvents
- Meets all applicable specifications and standards
- Optically correct and balanced
 Provides superior welding lens protection.

Style: Scratch, Static

Meets ANSI Z87, 1 and CSA Z943

BEST WELDS Cover Lens Couvre-lentilles Lentes protectores Reserve Messer, Pring John Christon & Spring Control Reserve Messer, Pring John Norman And Edit 1 (263-214) 1-EA-2"x4-1/4"/50 8mmx108mm SP-1

2x4 1/4 70% Cr-39 Magnifier Lens

Features:

- Magnify like magic with a sturdy glass magnifier plate that provides optically balanced magnification Allows users to see work-piece clearly Long-lasting.
- 932-145 Glass specify focal power (0.75 thru 3.50) Clear

37

BESTWELDS®

TWIN WELDING HOSE & HOSE FITTINGS

Twin Welding Hose

Features:

- Hose Type: Extrusion
- Tube: Black color of SBR blend based compound. High impermeability.
- Cover: Green /Red color of EPDM blend compound. Abrasion and weather resistance.
- Reinforcement : High tensile synthetic yarn.
- Surface : Smooth with pin pricked
- Temperature : -20°C to +80°C
- Safety Ratio : 3:1
- Tolerance : ISO 1307

Product Code	Description
900 1/4X25FT-TH	1/4" x 25FT OXY-ACETYLENE 300 PSI TWIN HOSE W/FTTING
900 1/4X50FT-TH	1/4" x 50FT OXY-ACETYLENE 300 PSI TWIN HOSE W/FTTING
900 1/4X100FT-TH	1/4" x 100FT OXY-ACETYLENE 300 PSI TWIN HOSE W/FTTING
900 1/4X328FT-TH	1/4" x 328FT OXY-ACETYLENE 300 PSI TWIN HOSE

CONTINUED CONTIN

Oxy-Fuel Hose Nut & Nipples

Product Code	900 RHNut	900 LHNut	900 NPL1/4
Description	Oxygen RH	Acetylene/F. Gases LH	1/4" ID Hose
Size	B-Size	B-Size	B-Size
Service	CGA-022	CGA-023	1-15/32"
Material	Brass	Brass	Brass

900 RHNut

900 LHNut

900 NPL1/4

WELDING CABLE

Double Insulated | Extra Flexible | Orange & Black Jacket * 10 Sq. mm to 400 Sq. mm * 600 Volts * -50°C to 105°C

Features:

- Based on CENELEC HD 22-6 31, VDE 0282, IEC 245-6, IS 473, BS 638-4
- Outstanding toungness & durability
- High resistance to cuts, tears & abrasion
- Resistance ozone and weather resistant
- Fire Retardant

Construction:

Conductor: High Conductivity, bare annealed copper flexible conductor.

Sheath : Double Sheatherd with a specially developed thermoplastic

Elastomeric (TPR / TPE) Orange / Black Coloured

Voltage Drop:

When total cable lengths in excess of 15 mtrs. are involved, it may be necessary to use cables of larger cross section to ensure that the voltage drop in not excessive and welding currents in maintained at adequate levels.

Applications:

Welding: Designed for the secondary (high current) connection to automatic or hand - held metal arc welding electrodes. It is suitable for flexible use under rugged conditions. On assembly lines and conveyour systems, in machine tool and automatically operated line and spot welding machines. Power: Earthings / return leads, power feeds to electrolytic plating process, busbar connection, transformers, generators, aircraft servicing equipments etc.

Current Ratings:

The maximum current ratings of flexible welding cables for different duty cycles are based on an ambient air temperature of 20 Deg. C to 25 Deg C and a maximum conductor temperature of 90 Deg. C. The percentages duly cycles given in the tableare based on a cycle Tim. of 5 minutes.

The typical duly cycles for various welding processes and applications are as follows:

Ambient temperature °C	20°	25°	30°	35°	40°	45°	50°	55°	60°	65°
Rating Factor	1.04	1.00	0.96	0.91	0.87	0.82	0.76	0.69	0.64	0.57

BESTWELDS® www.oki-me.com

WELDING SAFETY PRODUCTS

Golden Apron

Features:

- Part No. BWS-24-36
- Suede leather Nylon fastening with hook Two pockets on front To wear
- over clothing Excellent leather thickness Protection against small
- droplets of molten metal
- Standards: CE Cat I EN 388 Fire Retardant
- Size:24X36 inch.(One size fits all)

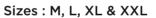
Welding Apron, Golden Suede Leather Color: Yellow

Application:

- Cutting Welding Small particles of molten splash Short contact with flames Protection from radiant heat
- Carton Weight: 35.85 kgs
- Packing / Carton: 50 Pieces

Carton Dimension: 38 x 35 x 66cms

- CBN / Carton : 0.0877
- Origin: Pakistan


Welding Jacket

Features:

- Part No. Model 900 WJ-FLTH
- Leather Welding Jacket

 Worn over garments to protect body and arms from sparks and spatter

- Stand up collar
- Adjustable wrists
- Inside pocket
- Side take up straps
- Kevlar stitched
- 1.2mm thick cow hide. split cow hide
- Headphone slot

Standards: BS EN ISO 11611: 2007 - Class1

Welding Blanket

 Bestwelds Filament Fiberglass Fabrics produced by high grade Filament Fiberglass vern with high tech imported loom. After weaving the varn, we got a fabric with an excellent fire proof performance, good electrical insulations, strong heaf resistance, good corrosion resistance. It is mostly used for Welding blankets, fire blankets, fire proof curtains, heat shields, pipe protection. Thermal insulation; compensators; coating; lamination etc.

Part No.	900-3784-1-50
Description	1MX50M - Filament Fiberglass Fabric - Welding blanket
Temperature	550°C
Weight	840 g/m
Thickness	0.8mm

BESTWELDS®

WELDING SAFETY PRODUCTS

16" Leather Welding Gloves (Heavy Duty)

Features:

- Part No. 900 1465-16
- Welding Glove Hockey Palm, Cow Split Leather, Cotton Lined on Palm, Canvas lining Inside on the Cuff,
- Wing Thumb, Colour: Yellow.
- Standards: CE Cat IIEN 388:2016, 4244XEN, 407:2004, 41324X,
- Size:16 inch
- Packing: 5 Dozen/Carton
- Carton Weight: Gross Weight: 28.5 kgs/carton
- Carton Dimension: 40.66 x 33 x 56cms
- Origin: Pakistan
- Application: Construction Utility Engineering
- Manufacturing, Automotive

14" Tig Welding Gloves (Heavy Duty)

Features:

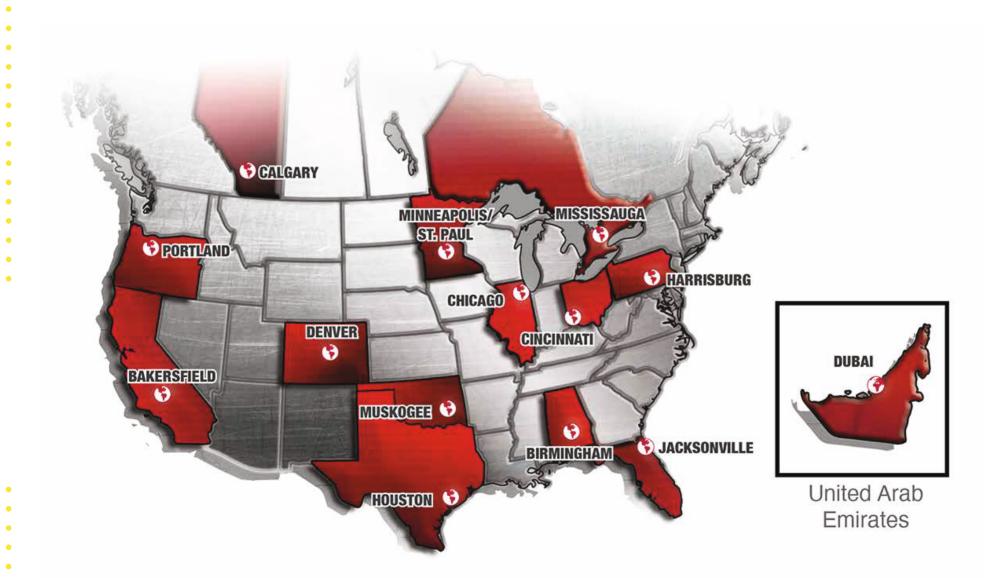
- Part No. 900 920-14
- Wing thumb Full grain leather Durable, flexible, excellent comfort breathable, long-wearing, it has excellent dexterity and high mechanical resistance
- Wing Thumb, Colour: White.
- Standards: CE EN 388:2017 2121X, EN 407:2004 X1224X
- Size:14 inch
- Packing:10 Dozen (120 pair)
- Carton Weight: Gross Weight: 22.64 kgs/carton
- Carton Dimension: 59 x 37 x 33 cms
- Origin: Pakistan
- Application: General maintenance TIG/MIG welding, Do it yourself

BESTWELDS[®]

AUTHORIZED WHOLESALE DISTRIBUTOR

• • •

• • •


BESTWELDS NOTES		The state of the s
		- 7 -

www.oki-me.com

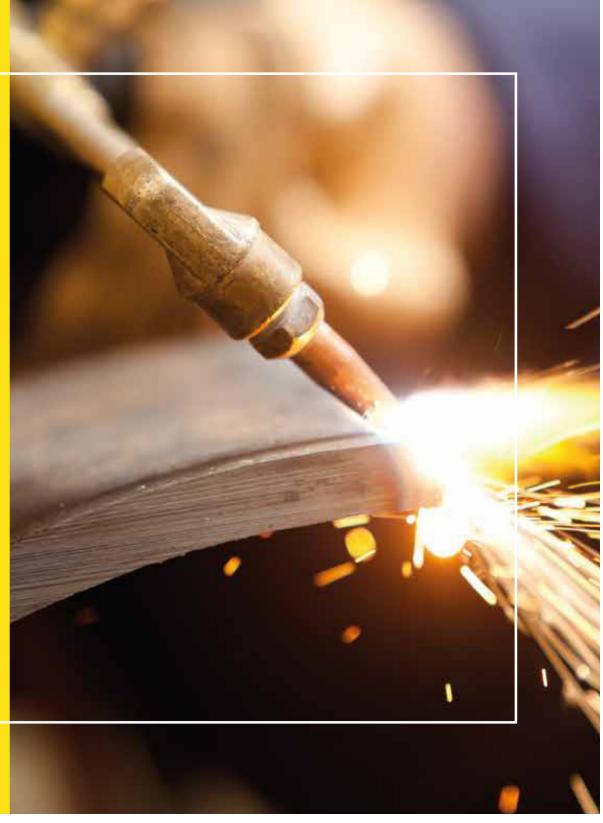
BESTWELDS[®]

Our Distribution Centres in USA, Canada & United Arab Emirates

BEST WELDS PRODUCT CATALOGUE

Registered Office

RA07 AC03, North, Jabal Ali Free Zone, Dubai, U.A.E.


Tel: +971 48860679 | Fax: +971 48860678

Email: info@oki-me.com | Website URL: www.oki-me.com

Head Office

ORS Nasco LLC 907, South Detroit Ste. 400, Tulsa, OK 74120 U.S.A.

